THEORETICAL CHEMISTRY INSTITUTE
THE UNIVERSITY OF WISCONSIN

(NASA-CR-127261) ENTROPY AND CHEMICAL 72-
CHANGE. 1: CHARACTERIZATION OF PRODUCT N72-27757
(AND REACTANT) ENERGY DISTRIBUTIONS IN

Unclas

RE@CTIVE R.B. Bernstein, et al (¥isconsin
Univ.) 7 Mar. 1972 49 P CSCL 20H G3/24 34054

ENTROPY AND CHEMICAL CHANGE. I. CHARACTERIZATION OF PRODUCT (AND REACTANT)

ENERGY DISTRIBUTIONS IN REACTIVE MOLECULAR COLLISIONS: INFORMATION

AND ENTROPY DEFICIENCY

R. B. Bernstein and R. D. Levine

Reproduced by

NATIONAL TECHNICA
INFORMATION SERVIC'E

US Department -of Com
Springfield, VA. 221r;lerce

WIS-TCI-472

MADISON, WISCONSIN



Entropy and Chemical Change. I. Characterization of Product (and Reactant)
Energy Distributiona in Reactive Molecular Collisions: Information

) , *
and Entropy Deficiency

R. B, Bernstein
Chemistry Department and Theoretical Chemistry Institute
.University of Wisconsin, Madison, Wisconsin 53706
and s
b. Levine++

Department of Chemistry, The Ohio State University
Columbus, Ohio 43210

ABSTRACT

The present oaper considers optimal means of,characterizing-the distri-
bution of_product energy states resilting frou reactiveioollisions of moleoules
with restricted distributions'of initial states, and vice.verse,‘jﬁﬁb,chsracter—
izing the particulsr reactant state distribution which yields a given set of
product states, at a specified total energy E . The - §fmatrix, or reaotionr
probability matrix - P(E) "slobal" in nature, contains muoh.more detail than-
necessary to reproduce the results of any single specific experiment or computer—.
simulation thereof (via elassical mechanical trajectory calculations). More-t>'

over, since reactant and/or product state resolution is always experimentaily,"

. , , .
This work received suppott from the National Science Foundation, Grant
GP-26014, National Aeronautics and Space Administration Grant NGL 50—002—001
and the Air Force Office of Scientific Research, Grant XXX-0000.

+

Alfred P. Sloan Fellow. -tAlso at Départment of Bhysical Chemistry, The
Hebrew University, Jerusalem, Israel,



ii

limited (t§ a greater or lesséx degree), data are necessarily coarse-
grained accordingly. .Mhny quantal features are thereby lost and the
resulfs are oftén at a level appropriate for comparison with classical
calculations (g;g;,in the form of low-resolution contour maps of energy
disposal). Such contour plots of the yield functioﬂ Y or the averaged
transition probability w (the "poor-man's" Pematrix) nevertheless con-
tain the essence of the dynamical results. It .is suggésted to represent
the energy-dependence of global-type results in the form of square-faced
bar plots, and of data for_sbecific—type experiments (or computer simula-
tions) as triangular-faced pfismatic plots (contour maps 99. E ). . .The
essential parémeters defining the internal state distribution are isolated,
&nd the information content I(E) of such a distribution (for a micro-'
canonical enseﬁbie) is put on a quantitative basis. The rela;ionship
between the information content, the surprisal, and the entropy §f the
‘continuous distribution is established. The concept of an "entropy
deficiency" AS', which charaéterizes the specificity of product state
formégion, is suggested as a useful measure of the deviahce from

" statistical (“phase-space dominated") behavior. The degradation of

‘ informaﬁioﬁ by experimental a§eraging is considered, leading to bounds

‘on the entropy deficiefiepc

/f



1. Introduction

Important information on the dynamics of reactive molecular collisions
is derived from a knowledge of the distribution of internal energy states of
the products or the relative reactivity of reactants in different excited

internal-stateslm?l.

~ In the present paper, for simplicity we restrict our attention to the
simplest case of a three-center, atom-transfer reaction of the type
A + BC + at C, where the dagger denotes internal excitation of the product -
diatomic. An example is the hydrogen-abstraction reaction:

Ce + HI(v,J) + HCa(v',J') + I, W)

one of a number of three-center reactions which have been well-studied via
the infrared chemiluminescence technique by Polanyi and his followersl’s.

Ordinarily the initial internal state (v,J) distribution has been
essentially Boltzmann, fixed by the tempefature of the reactant molecules BC. . .
The experimental measurements yield the internal state distribution (v',J')
of the product molecules ABf, often found to be non-Boltzmann in character.

In many cases extensive population inversion occurs, thereby providing the
basis of chemical laser actioan; ‘

With the exception of the hydrides, the resolution of individual
internal quantum states of the products has not yet been feasible. For most
practical purposes, when the density of internal states is high, it is
therefore convenient to regard the internal energies as continuous variables,
say EV' and ER" representing product vibrational and rotational energies,
respectively. Even when individual states have been resolved, it is often
useful to "smear out" the discrete distribution to convey a qualitative
picture of the overall experimental results. Mo}eover, with the wide
utilization of classical mechanical trajectory calculations and Monte Carlo
- evaluation of reactive scattering cross sections it behooves us to adapf
to classical, continuous probability density functions, histograms and '"bins" "
rather than to attempt to "quantize' artificially -the classically calculated ‘
results. In sections 2-4 and 9 we will concern ourselves mainly with coarse-

_ grained product (and reactant) energy distributions.
' Given the internal energy distribution of product (AB?) molecules
one can immediately calculate the distribution of relative translationél



energy, E.,, of the recoiling products6p making use of the energy conservation

TW
relation:

+ By, *+ Epy = E ,+ E ¢+ E, - AE . )

E=E yr * Bpe = Bp v By ¢ By - L W

TO
Hora B 48 tho ot onowgy, mndo v e vho Mii’i(;&i solotivo ermnslational
energy of the A + BC system, ET” the vibraZ?ional and rotational energies, EV
and Eps of the reactant molecule BC, and the zero-point to zzro-point
reaction exoergicity, -=AEO° The translaticnzl distribution of products can
be measured directly, im the course of moliecular beam scattering experiments,
via the velocity znalysis techmique7°9° Thz cressed molecular bean method
has also yielded rore direct information omn product state distribmtionslﬂv
For a number of rzactions it has been possible o carry out rotational stete

11,12 and, mores recently, vibrational state analysis has been

13,14

analysis,
accomp lished The chemical 1laser techpique, a2s pionreered by Pimentel
and co-workers, has provided independent dztz on relative mopulaiions of

. . 15,16
vibrational states of preduct molecules,” ”°

wnick are directly comparable
with the ir chemiluxiresconce xasults. Xt is clear thal Che gquestion of the
energy disposal in e.ementary exoergic wi3s~ticong ig of guest fspercea se in
the field of moderm chemical kimetics.

Alternative information on microscopic chemical reaction dynamics
+ is available from experiments involving reactants in excited internal states.
Thus far such studies have been concerned with endoergic reactions or those
with an energy barrier to be surmounted. The influence of reactamt internal
¢ 2 By * Eps 3
constant ET’ has been studied in one such case by Schmeltekopf et al., and

energy Ein controlled by the temperature of the BC molecule; at

the separate effect upon the reaction cross section of By at fixed Ep and Ep
has been investigated by Chupka et ala,lg and by Brocks znd C@ﬂwofkef$199
The possibility of utilizing judicious vibrational excitation of reactamts

for selective influence of the product molecular configuration has already

20

been considered”™ , and selective excitation by lasers is now a rapidly

&

developing fieldziL with many practical implications.
The considerable experimental activity in this field has stimulated

230 Anlauf et a1°24 pointed out the utility of

much theorctical interest
microscopic reversivility to gain information om the influence of reactent

excitation upon the rate of en endosrglic resctien, based upon preduct



internal state-distributions for the exoergic reaction. Kinsey25 showed how
such considerations dould be most fully exploited when only limited data of
various 'types -on the-éxoergilc reaction are available.,Marcus26 further

investigated these same .questions and showed the relationship to the quasi-

23,27 has

equi librium approximation. The simplistic optical model analysis
also been used in this'area, interrelating the forward and reverse reaction
cross sections. The:statistical theory28730 has -been found to be a useful
diagnostic tool, since deviations from its predicted (equilibrium micro-
canonical) ‘distribution of product states are a measure of the Specifié, non-
'equilibrium nature -of the reactive collisions.
The-ultimate theoretical description of the dynamics is, of course,
a proper -dyniamical theory. At -the present stage there are still formidable
obstacles in the path of a full quantal solution of the reactive scattering
problempsl"Thus\@e turn to.classical mechanical, numerical trajectory
calculations;1‘23)327$§ which attempt to stimulate experiment assuming a
"realistic", adiabatic potential surface and neglect all quantal interference
effects. In what follows we shall assume that at least fragmentary, low-
resolution data or computer-simulated experimental results are available, and
our goal is to extract as much information as possible from the available
"data", whether experimental or calculated.
One of the aims of the present paper is to develop optimal means

of characterizing the distribution of product states (in a given experiment,

at a given total energy), as governed by the reactant state distribution (and
vice versa, i;g{, the reactant state distribution yielding a given set of
.pfoduct states), in terms of any two of the three energy variables ET" EV"
ER" Of course, only two of these are independent quantities (cf.Eq. 2).
It will often be convenient to work with fractional quantities f,, defined

. as the fraction of the total available energy in the mode X (where X may
", be T,V,R or the same symbols primed). Throughout the paper attention is

* yestricted to the energy range below the threshold for collision-induced
~ dissociation.

Before proceeding further, it is necessary to distinguish between
two classes of data, i.e., ''global” and '"specific". For a complete statement
of the dynamics of the reaction, one requires the transition probabilities
‘from all possible initial states to all possible final states. Such a global
representation requires a transition probability matrix, P, whose elements
are qu-squared‘elements of the gfmatrix, such as would bé provided by a full



quantal solution to the scattering problem. Neither the experimenter nor
the classical mechanical computer are as ambitious as the quantum mechanic,

however. They are content to describe an incomplete but specific experiment,

i.e., a distribution of product states (or product energies) for a given
set of initial conditions.

One can further distinguish (within the class of "specific"
representations) between a detailed study in which the product distribution
is determined for given, specific initial reactant states, and an "inclusive'
study which yields the product state distribution éveraged over the reactant
state distribution. Assuming perfect resolution of internal states, a
global description provides the whole P-matrix. A detailed, specific study
(later referred to as '‘clusive') characterizes a column (or a row) of the
gfmatrix, while an inclusive, specific study provides only an “average’
over a row or columm.

. Sec. 2 considers the preéentation of the results of a study of
the global dynamics in the form of square-faced '"bar' plots; such a plot
provides low-resolution probability contour maps (the poor-man's g;matrik)a
Sec 3 discusses thevrepresentation.of "specific'" results in the form of
a triangﬁlar—faced "prismatic'" plot. The essential parameters defining
a given internal state distribution are isolated and discussed in Sec. 4.
The "information content" of a product state distribution is considered in
Sec. 5. Transition probabilities and the problem of degenerate (or
experimentally indistinguishable) states are discussed in Sec. 6 (which is
confined to discrete distributions). Sec. 7 is concerned with the
information content of the two types of "'specific' experiments, as well
as the ''global" type of results. Sec. 8 summarizes the hierarchy of
possible representations that are available for the distribution of products
(and influence.of the distribution of the reactants). Sec. 9 considers
the problem of defining the information content of a continuous distribution.
Sec. 10 makes the comnection with entropy and suggests the concept of an
entropy deficiency characterizing the specificity of the product state
distribution. Sec. 11 summarizes the important definitions and results.



2.  SQUARE-FACED BAR PLOTS FOR SUMMARIZING RESULTS OF 'GLOBAL'" EXPERIMENTS

One may ''collapse'" the transition probability matrix P, at a given E,

to a function of two independent variables E., Ep, (or E. E;nt! which are

1nt’
complementary variables). Primes designate products (post-collision variables).
The fractions fT’ fT' are convenient reduced variables; thus fT = ET/(ET)
and fT, = ET'/(ET')max’ where'(ET)max
allowed values of ET, ET' respectively (cf. Sec. 1). Thus l-f*,and 1-f_, are

max
R (ET')max are the maximum conservation-

the reduced internal energy of reactant and product molecules, respectively.
Let w(ET,ET,) be the average transition probability25 corresponding to

reactants with E, in the range between ET and ET + dET forming products with

T
ET' in the range Epis ET' + dET, (at a given total E). Then
oEpbr) = 5 0 a3 8 (1) ®
Here n,n' denote the internal states of the reactants and products respectively,
Pvgy= jsn, n|2 is the n + n' state-to-state reaction probability and the sums
2 . L

are confined to states n,n' in the specified ranges (corresponding to the
ET’ET' increments). The concept of averaged transition probability (and its

- symmetry with respect to the interchange of E and ET,) is further d1scussed

in Secs. 6 and 9. It is of course clear that the concept of a smooth funct10na1
" . dependence of w on the two var1ab1es‘ET, T implies not only classical mechanics .
but also a sufficiently high density of internal states so that the dependence
on the variables is smooth and the limit implied by (3)(both numerator and

" denominator are differentials) is well defined. The probability w can be:

. presented ds a contour map in terms of Eps Eq (as in Fig. la) or in terms

- of £, fr,

. of the relation between the two

on a unit square (Fig. 1b). Of course we must take cognizance

m(Ex)dEx = 'm(f Ydf (4)

X
Note that, in general, w(ET,ET,)‘is the same quantity for both the forward
' - and the reverse reaction, and a single contour map is sufficient to characterize
~the global dynamics at a specific total energy E. Stacking together such squares
at sucééssively greater values of E yields a '"bar plot'", whose cross section is
the f fT'
(coordinates f(m) féT)) are plotted vs. E in Fig. lc.

There are no ''global" results available yet, either experimental or

plane and long axis and the E scale. The loci of the maximum of

computer-generated, even at a single E, although a considerable amount of
fragmentary information from different sources is known. For example, data



" (i.e., fg?ﬂ 0 4

exist which correspond to vertical or horizontal "slabs' of the bar.

In certain common types of "inclusive' experiments the total
reaction cross section into all product internal states is measured as
a function of ET’ with reactant internal state distributions essentially
Boltzmann, coxresponding usually to small £, fR. Thus £T is maintained
T - 8By
varies directly with ET° This measurement of o(ET) is the most common

at a near-constant value slightly less than unity while E (= E

one in conventional beam experiments, for example in studies involving
ionic reagents, 17,18,37 collisional ionization of neutrals,38-40 and,
recently, for neutral reactants yielding neutral products41. Such
experiments amount to summing (or averaging) over all fT, in a "vertical
slab" of a bar-plot such as Fig. Ib.

There are more refined, and thus only partially-inclusive,
experiments in which the product translational distribution is measured
as a function of E.,

T
constant). Here the "'vertical slab' has been analyzed in terms of its fT,

(with the reactant internal state distribution held

distribution.
In another type of experiment the reactant internal energy is varied

at nearly constant E (or over a small range of E) and the total reaction

17,18,42

cross section cbserved, but with no translational (or internal)

' energy analysis of the products. These results correspond to summing over all

£r, for a series of successive vertical slabs at given fT values. An example
of such primary data is shown in Fig. 2, constructed from the results of
Refs. 17 and 43,

. 'The global results require observations (or computations, at least

S T N ST TS [T . N
via classical trajectories) at constant E over an entire square grid of

fT’ £Tq to establish a contour -map at each of several values of E. Such a

global bar-plot would have practical implications with regard to

optimization of reaction yield. The relative importance of E; vs. E. . at

e . N Coe . . a
~given E can be ascertained by inspection of such,contour map. E.g., from

Fig. la (at E = 10 units), optimum yield of products for the endoergic
reaction would be obtalned if the reactants had a value of E. int of 6 units

i thus E(m} = 4 and E(m) 6 units). Note that the smallest

"allowed" value of E ‘is mAE S unlts. Information on both forward and

34

Teverse reactlons is contalned in the same contour map The limitation of a

‘$quare- faced bareplut such as that of Fig. Ib is, of course, that distinction

" is made only between translational and internal energies, whereas we know



that the separate internal modes (rotation and vibration) contribute
very differently to the reaction prob.ability. ‘Thus we should consider
the "decomposition' of Eint into its two '"components', Ey and Eps and
their separate effects, as discussed in the next section.

o



3. TRIANGULAR-FACED PRISMATIC PLOTS FOR SUMMARIZING RESULTS
OF "'SPECIFIC" EXPERIMENTS

The information content of one type of "specific" experiment, g,
one in which reactant states are specified, is the coarse-grained
distribution of product states represented as functions of any two
independent variables of the set {ET" EV" BR,} . We may also consider
the inverse of this, i.e., the distribution of reactant states, in terms
of {E V’ ER} s Which yield a specified distribution of product states
correspondlng to the same total energy E. If this specified product state

distribution is chosen to coincide with the reactant state distribution of

the previous experiment, the results of the two experiments are uniquely

24-26 e properly

44

related via the principle of microscopic reversibility.
symmetrized measure of reaction probability is either the yield function,
Y, or the closely-related averaged transition probabih'.ty,zS we

The results of a '"specific" experiment can be conveniently represented
as a contour map in a plane, with contour lines denoting equiprobable final

24 Of the several possible

states (or initial states, as the case may be).
choices of diagrams (see Appendix 1 for details), the equilaterial triangular
one used by Kinseyzs seems preferable, since it maintains complete symmetry
with respect to the three modes T,V,R (or T',V',R'). Such a plot is
illustrated schematically in Fig. 3. The coordinate axes are the fractions fx
of the available energy in mode X, and the vertices designated T, V, R
represent 100% of the emergy in the specified mode, as usual. Of course, any
two coordinates of the set {f,, fv, fR} suffice to specify the location of

a given point. (Note that such a triangular probability contour map is not
the same as a triangular map of relative Eﬁig constants, as used to display
1,24,48)

The most significant single characteristic feature of such a

the chemiluminescence resuilts.

continuous state dlstrlbutlon or contour map of reaction probab111t1es
is the location of the maximum probability (and possibly of any subsidiary
maxima, not present in the example shown). The coordinates of the maximum
are designated £§m) f(m)9 émz any two of which fix the "most probable"
location. The next most 51gn1f1cant feature of such a state distribution is
the "sharpness" of the maximum. This question is discussed in Sec. 4.



Of course the location of the maximum and its intensity (and curvature)
will depend upon E, but in general one expects that the energy dependence
of the most-probable fraction f(m) in mode X will be less severe than that

X
of E§m), the most-probable energy45’46

itself,

In order to display the overall energy dependence of the state
distribution one can array a "stack" of such contour maps aloﬁg a total
energy. axis, E, perpendicular to the triangular faces, thereby obtaining
a prism, as shown in Fig. 4a. Each cut through the prismatic diagram
represents the energy partitioning at the specified, constant total E.
Fig. 4b summarizes the most significant data, the trajectory of the locus
of the maximum yield as a function of E, analogous to that of Fig. lc.

It should be noted that the entire prismatic plot corresponds to
a certain set of initial conditions specified by f,,, fR or, more commonly,
a particular distribution in f,, fR. We may thus distinguish between two
types of "specific'" experiments. The first is an "inclusive" type, where
there is a broad distribution of initial reactant conditions (i.e,
distribution in fV’ fR) which give rise to the product distributions in
fV" fR" £T' displayed on each triangle. Conversely, for a given
specified fv, fR one -has data only on the total product yield and so the
"contour map in the triangle summarizes the influence of the initial state
distribution in fv, fR upon the overall reaction pfobabili:y. An ekample
of the former is the usual ir chemiluminescence experiment™ in which
Boltzmann distributions of reactants at given temperatures describe the
initial conditions and then the experimental results consist of detailed
product state distributions, i.e., w(fy,, fp,) valid for the set {f,, fﬁ}
at some mean value E of the total energy. An example of the inverse is
an experiment in which the total reaction cross section (irrespective of

product states) is measured as a function of Ev and/or ER at essentially

 fixed E, as in Refs. 17-18. -

It is clear that the results of such "inclusive", "ébecific",
eiperiments provide only a limited amount of information on the reverse
reaction. This can most easily be seen upon consideration of the équare-

‘faced bar-plots of Sec. 2. An inclusive experiment supplies only the (possibly
weighted) average (or sum) of‘entrigs‘alqng a.row or column and hence cannot

characterize. the entire square face.
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As an example, consider a simple case of an exoergic reaction
(cf. Eq. 1) carried out in a crossed beam experiment, with reactant BC
in a Boltzmann internal state distribution (characterized by some temperature
Tint) and with a given relative translational energy distribution, say
Maxwellian (corresponding to some temperature Ttr)‘ Suppose that this,
inclusive, experiment shows that the product AB' is formed with considerable
vibrational excitation. Then all that one may conclude is that, for the
reverse reaction, the use of vibrationally excited AB' as a reactant will -
enhance the rate of formation of BC in an essentially equilibrated
Boltzmann internal energy state distribution (characterized by the above-

47

mentioned temperature Tin . One cannot rule out the possibility that

)
(for example) an increasetin the translational energy (ET,) would not be
still more advantageous for the production of BC, if no restriction is
placed on the degree of excitation of the BC. Classical trajectory
calculations would be useful to explore such questions in detail for
specific systems49.

The more detailed information is provided by a specific "clusive"
experiment. Here one considers the distribution of products for a sharply
defined initial state. The prismatic plots, as in Figs. 3 and 4, represent
a complete summary of the energy disposal for.the "forward" ekoergic
reaction, in a specific, clusive eiperiment (i.e., for a narrow range
of £v, fR’ or, more commonly, at a narrow range of Ev, ER). A prismatic

plot represents an enormous amount of detail, more than we would normally
wish to know. Yet, in recording only the energy trajectory of the locus
of the maximum in the contours in Fig. 4b, we have sacrificed too much
detail. What is needed is to characterize succinctly the contour map
in the region of the neighborhood of its maximum. In addition to its
coordinafes, one requires its.''strength" (or magnitude) and ifs "'sharpness''

(or curvature). This will be considered in the next section.

.
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4. CHARACTERIZATION OF A PROBABILITY DENSITY ENERGY CONTOUR MAP:
"MOST PROBABLE STATES"

From the discussion in the previous section it appears highly
dosirsble to attempt a concise characterization of an internal energy
contour map, i.e., to consolidate the overabundant detail of such a map
(cf. Fig. 3) by parametrizing its most significant structural features.

Perhaps the simplest characterization is the one originally used
by Polanyi and others3 to summarize the chemiiuminescence results. The
data are "coarse-grained", by considering the relative rate of formation

of product aBt in each excited vibrational state, irrespective of

rotaﬁional excitation, and then plot the results as,k(fvb vs. £ u(wheri 5
fv'denotes the fraction of the available energy in product vibration).
Then one calculates the average value of the fraction in vibration, say
f;,,This implies the average fraction of the available energy released
into relative translation, by difference, to be T';— 1 ?v:.

In view of the trend1’24’25’48 toward the use of the more detailed

internal energy contour maps, we should consider the concept of the set
of three averages (., f f } . For this we need to locate the ''center
of gravity" of a trlangular probabllity contour map such as that of Fig. 3.
This result will obviously be different than that for a right triangular -
map of relative rate constants.1’24’48 For the latter, one could carry
out the averaging independently in the two orthogonal directions (f, fR)
to obtain T, ?%. In the absence of experiments, a classical mechanical
Monte Carlo computer simulation (for given ET, v’ E ) can readily yield
number distributions in EV' and ER' (con51dered as 1ndependent varlables)
from which the first moments can be found, yielding EV' and ER' and thus
f' and ?7 . (Under certain conditions, the first few moments of a p.d.f.
can be 1rectlx obtained, with good accuracy, and with relatively few
traJectorles without the necessity of computing the entire p.d.f. 1tse1f) 1
However, the thus-obtained average, T;,, is not the same as the
previously mentioned average value of the fraction in vibration, calculated
irrespective of the rotational excitation. It is also not true in general
that T;, + o, equals 1 - f},. Clearly there are many pitfalls (or at

least ambiguities of notation) in discussing such averages, and presumably
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there would be similar caveats applied to any ''averages' over triangular
probability contour maps, such as Fig. 3. These considerations suggest
that the characterization of such a map in terms of its "shape'" near
the.maximum is preferable to one in terms of average fractional energy
disposals.

Before proceeding further, however, it is worth noting that for
all systems thus far studied (either by experiment or computer simulation)
the range of relative probabilities w encompassed by the map is rather
large, i.e,, w 1is usually a strongly varying function of {fx}, It is
therefore convenient to work with the logarithm rather than the original
function itself.

Accordingly we define a new function Y(Ev, ER) by the relation

w(Ey.Ep) = exp[=I(Ey.Ep)] Q)

where the w is the probability of Secs. 2 and 3. Similarly I may be
defined in terms of any other pair of independent energy variables, such
as Eq, Ev, etc.

In view of our preference to represent the results in terms of
reduced variables, fX’ e.g., in the triangular contour maps such as
Fig. 3, ve redefine I accordingly (noting the differential range
relationship of Eq. 4), so that

I(fV”fR)E <=2nw(fv,fR) _ (6a)
I(fTusv)':' "'R'nw(f-rv.efvv) _ (6b)

and so forth, depending upon the choice of independent variables. In what
follows, to simplify notation, the two independent variables wilil be

designated x,y. ‘
(e) _(m)

The locus of the '"most probable fimal state", x~ 7, y may then
be determined by solving
[31(x,y)/3x]. = [3I(x,y)/dy] = 0. (7)
x(m) ’ y(nD o

The sharpness of the mimimum in I{x,y) is governed by the magnitude
of the three second derivatives or "force constants', here designated
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kxx"kxy’ kyy’ defined in the obvious manner:
¥
— a2 2 ‘
kxx = [27I(x,y)/3x ]x(m) (m)
sY
) (9
kxy = {3 I(k,yyaxay]x(m)’y(m) , etc.
(m) _(m)

In the neighborhood of the ''most-probable state's k s Y T,
we can expand I(x,y) and truncate beyond the quadratic terms. This
_ should provide a "poor-man's characterization" of the contour map
of the p.d.f. at the specified E: Thus we write

| | ,
) ¥ 1™y ™) ¢ 2a ™12 sk 1™y ™1+ 3k by ™1 9

X
Unfortunately, even the truncated expression (9) requires a knowledge

of six parameters (two for the iocus of the maximum, one for its strength

and threeﬁfforce constants'), all of which may be ekpected to be E-dependent.

One can simplify the parametrization of the I(i,y) surface by choosing a

new pair of coordinates, say u,w, such that'-

, 1 2 1 2
I(u,w) = 1(0,0) + E'ku u® + i'kw wo, (10)

Such a normal mode' -transformation is xeadily‘effected by diagonalizing
the quadratic form ( 9); the details are briefly summarized in Appendix I.
Since the transformation involves a rotation it requires the specification
. of one angle. Thus the three original force constants have effectively
been replaced by two new ones plus an angle. The hope is that this angle
" will be only slightly energy-dependent, and so there may only be four
paramters which vary significantly with E, of which two of them (the
force constants ku’ kw)}might be expected to be fairly insensitive to E
(cf. the implications of the hypothetical Fig. 4a).

There are, of course, intermediate levels of detail, providiﬁg'
more information than just a "poor-man's" specification, yet not as
detailed as the whole probability contour map. One may specify a
distribution for one independent variable only, either by holding the

, other variable constant or by integrating over all possible values of
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the other variable, as described earlier. The former corresponds

to a cut along the prismatic plot, the cut line being the line of
constant fx’ In particular, such a cut can be made for fx = f*("D,
showing the distribution with respect to the other two variables, or
aleng an odgo (fx ® 0}, The latter is moro common (cf, Pig. 2).
Note that the most probable value of f& can be determined cosrectly
from a cut at fim) but not necessarily from an edge cut (or a cut
at any other value of f,). Only if the two variables are truly
independent (i.e., if k_ = 0) or "uncoupled", are two cuts sufficient
to determine the distribution. :

In the next section we shall consider the implications of the
shape of these p.d.f.'s with respect to information content.
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. 5. INFORMATION CONTENT OF A PRODUCT STATE DISTRIBUTION

One notes upon inspection of a smooth distribution of product

energies (such as the contour map of Fig. 3) or a cut through such a

_.mﬂﬁﬁgdiéiiibuxion;ngngighyZJawxhat there is more "information content"

in a narrow distribution (where most of the reaction probability is
concentrated in the vicinity of the ''most probable state'') than in a
broad distribution. Alternatively stated,; there is less ''missing

52-35 in a narrow distribution. If we know that the

information"
distribution.is narrow. we predict with more confidence that in a future
"experiment'" most of the products will be ''found" near the maximum of the
distribution. The broader the distribution, the less our ability to make
useful forecasts, as we are missing too much information. Clearly, a
uniform distribution represents the maximal state of ignorance to predict
the outcome of a given "experiment". A narrow distribution (the analog
of a loaded die) implies that the situation is biased, favoring our ability
to forecast the result of a future "ekperiment” with more confidence.

The arguments above apply, of course, to any p.d.f.; Shannon52 and

53,54 have formalized these arguments by the itroduction of a

others
quantitative measure of the uncertainty associated with any distribution.
The more the information content of the distribution, the lesser our
uncertainty about the outcome. In an "experiment' with a definite
outcome, the uncertainty is zero. In an "experiment" with a'set of
equally probable results, the uncertainty is maximal.

The concept of the information content of a set of discrete
| results of experiments has been fully dealt with in the 11'.1:er‘ature,52"55
based on probabilistic and statistical consid?fations. It is noted that
the number of ways in which N experiments can 'result-in n different
outcomes , wi;h m; experiments yielding outcome number 1, mi'experiﬁents

yielding the i'th outcome, etc., is given by5
W=NI/G m! o s (19

g mi =N .

',where
: i=1

Let Pi =»mi/N be the inherent probability of the i'th outcome. Then

W= NI/7 (NPy)! (12)
i=1 |
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If all outcomes are equally probable, P, = Pj = ... = %-, then

W= NI/[QN/n) 1" (13)
so that for large N, n we obtain (using Stirling's approximation)
log W = N log n. (14a)

On the other hand, if only a single outcome is possible, i.e., say Pj = ]
and all Pk 2 0 (ks j), then W = 1 and

log W = 0. (14b)
The quantitative measure of information is usually taken to be
I = logW , (15 )

such that the umcertainty associated with a pair of independent "ekperiments"
is the sum of the. independent uncertainties, .. .

Eq. 12 can he rewritten for large N, n and combined with Eq. 15
to yield:
n
z

I==NZ P, logP, . , (16)

i=1 *

This is an extensive quantity. To cbtain the result 'per experiment",
this is usually divided by N and written

I = -IP,1gP, G7)

It is usual to consider the logarithm to be to the base 2, here
designated 1g. -

Note that I is a non-negative quantity. It ranges from zero
(cf. Eq.(14b)), when the outcome is certain, to its maximum value
(when Pi = %9 of 1g n (cf. Eq.(14a)) and so is a measure of the "missing"
information content.

In the subsequent sections we shall develop the concept of the
information content measure which is appropriate to the different
represenfations of product state distributions (both global and
specific). Towards this eventual goal we consider in the next séction
the construct of the averaged transition probability.
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6. TRANSITION PROBABILITIES: DISCRETE DISTRIBUTIONS

Let n and n* be the sets of quantum numbers required to fully
specify the quantal states for the reactants and products respectively.
In general, the experimental arrangement is such that one is unable, in
principle, to fully resolve the internal state557. The experimentally
indistinguishable states are collected together in the group vy .
Suppose there are gy, final states in the group y'. The averaged
. transition probability from an initial state in the group y to a final

state in the group y' is then given by25

wiyw") = (g.g. )Y Tz zop (18)

T .
Y°Y n'ey'ney n,n

. Here Pn' n is the detailed, quantal, state-to-state transition probability;
the notation means a summation over those states n included in the group y .
Subject to the reservations discussed in’ Appendix- II microscopic

rever51b111ty25 »58,59 holds, i.e.

wly>v") =wly'+ ) = wly,v") (19)

The limitations bf Eq. (19) should be clearly understood. What is implied
is that only one w(y,v') is necessary to specify both the forward and the
reverse probabilities. This does not imply that a matrix of elements w(y,y")
is symmetric. (In fact such a matrix will not, in general, be square).

‘Nor that if w(y,y') ié small then the rate of the reverse reaction from

state y' to all possible states is necessarily small.

In any particular experiment (or in any particular plot) the
specification of the initial state may use a coarse-grained scheme
that is less detailed then  the groups of indistinguishable states v,
(say,I' = all states having internal energy in a given interval). Let T
be the set of possible initial groups of states. If P is the probability
of finding the ‘system in the initial group y,(yer) the transition -
probab111ty 1nto the final group y' is thus59

P,= I Pa(y,ye = a) |  (20m)
v yer . Y ,Agv &1 _ |



where

w(y") = w(l,y") Gov

(Note that PY' is just the fractional or relative rate (kyu{i ky,)
!
of reaction into the product group y'). When the initial state is

" definitely in a particular group v , (i.e. PY = 1),

-1
= w(y,v')g,, =g, I I P,
& %8 nieyiney MO0

P (21)
corresponding to the usual procedure of averaging over initial states
and summing over final states.

One can consider either of two (time-reversal invariant)
probabilities, either w(y,v'), the averaged probability (which, as is
clear from Eq. (18 ) is bounded by 1), or the yieldsg

Y(v,v') = ngwa(st') o (22)

When the initial state is prepared without any attempt to resolve the
states within the group"T' then PY is sicply proportional to g, and
hence '

Poe = 3 (PY/gY) Y (v,v') (23)

(Note that PY = gY is the equilibrium condition for the microcanonical

ensemble, i.e. for an ensemble where the total emergy is in the range
61,62
)

The formal theory supporting these results is summarized in

E to E + dE, all quantum states are equally likely.

Appendlx Iz,
As an example of such averaging procedures, consider global data.

We restrict attention in this section to the discrete case. A particular

entry in a poor-man's P-matrix is . -
. I .

o(T,1") F 2'2'g g oty e te, . . (29
e e e e e e e Y e e m e
Using Eqs. (21-23), this expression becomes: . ' ‘

o T vame e e remo .’o:_- . vimw g — rzs)
w(F P') = Z’Z'Y(y ¥ )/&gnggm g} . n/&°iz°i
' Y Y A

RPIDSSUREE .. - . e = EIRTY G A e

18
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Here the primed summations are over y and y' (or n’énd nfj in the range
corresponding fo the entry in question. (The analogous results for the
case of continuous internal energies are developed explicitly in Sec.9).
Next we consider a specific-type experiment, where the initial ‘
eonditions are identical to those s?ecified previously in w but the final
distribution of products is known. The triangle plot (cf. Fig. 3) can then

be expressed in terms of

wly') = E'Puly,y) - yel o T (26)
- v .
. [ RS 'i\ull. H . [ ,'I.‘;:-le'
Thus
w(T,I') = z'gY.E(v')/ 'g o Y'el! . (27
Y" .- .Y'

All the information down a given vertical slab of a bar plot
(which corresponds to specified initial conéitions)-can'be obtained from
a trianéle plot for the appropriate specific-type experiment. The necessary
modifications for cbﬁ%iﬁuous distributions’aréfgiﬁen in Sec. 9.

[ PR
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7. INFORMATION CONTENT:  SPECIFIC EXPERIMENTS

In this section we consider the information content of the product
state distribution for the case when a partial resolution of quantum
states is possible. (Continuous distributicns are deferred until Seec. 9).

The averaged (over the group y') probability of finding the products
in the state n' is (cf. Eq.(20))

pnv = PYv/gYV 0 (28)

For the case of an "inclusive' specific eﬁperiment this becomes -
(cf. (20))

Py = ﬁ'PYw(Y,Y') = w(y") . (29)

and for a non-inclusive ('clusive) specific experiment

P,= wly,y) (30)

n!
In both cases

It should be clearly stated that (28) assigns equal probability to all
the states within the group y'.(Recall that final states within the '
group y' are, in principle, indistinguishable, under the experimental
‘conditions usedSZ). . _

The information associated with this product distribution is,
from Eq. (17) B

IP = - ;:'pn'].gpn,

‘=L I e _,/g_)ig(P_,/8_,)
oyt nley' YO Y'Y (32)

':';§° Pyllg(pYe/gYo)

.nz p I N ]
. Y' Y'. P(Y)
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where in the second line the inner summation is oVer gY, identical
terms. The fourth line serves to define a quantity Ip(y'), to be
referred to shortly. ' '

Given the experimental product state distribution and thus
the PYi; one can obtain IP via Eq. (32) as

Ip = - <13(PYr/ng)> | (33)
where the average is over the final product distribution. ié°is
clearly bounded:

0¢ Ipx< lg(fr'gy.) . (34)

The lower bound corresponds to all the products being in one particular
group while the upper bound is the microcanonical equilibrium distribution,
i.e. when PY,c gy, (so that the probability of the'products being in
the group is proportional to the number of states in the group
(cf. Sec. 6)). These results are essentially those already given in
Sec. 5, Eqs. (14a,b) with Eq. (17) for I.

IP is a meégufé of the information content of the whole distribution.
We can also define an information measure of a particular outcome, say y'.
This quantity has béen termed62 the "surprisal”. It has beeﬁ anticipated -
in Eq. (32) and is defined by |

') = 18P /g ) = -1guly") . (39
Thus Ip'is the average value of fhe surprisal:
- . . Y = - =1 =\ 't
Ip = 5‘ PY}IP(Y') = i'Pleg[w(Y )] A<IP(Y )> . ‘ (36)

Eq. (36) and its implications noted below are the main results
Vof this section. The information content of a distribution is the
average of the ;nformation contents.of the particular groups, each
group correspondihg to a.ﬁdééible outcome of the reaction. (By
definition, we are unable to distinguish between the members of any

specific group) .
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It is of interest to compare the surprisal for the two types of
specific experiments, the '"clusive" and the "inclusive'. For the former

the surprisal for a particular outcome is

IGrsv') = =lgluly,v")], , (37)

Here Ip(y,y') is the clusive information measure of the outcome y' for the
initial group of states y. In an inclusive experiment one necessarily
first averages over the entire distribution of unresolved initial

groups of states

Wiy = =P ulr,y") (38)
y Y '
and then obtains the information measure (cf. Eq. (20))

Ipty") = ~1gluly")] = -1g[Z'P uly,v")] (39)
: Y
It follows from the inequality for convex :?:‘um:tionsM’65 that
Ip(y") > x’ P Ip (vsy') . (40)
Y

If we now average these surprisals over all final states to
obtain the information associated with the overall product distribution,
following the procedure of Eqs. (32) and (36), we see that the value of
IP for the inclusive case (obtained by averaging the %.h.s. of Eq. (40)
over all y‘) is greater than the I for the clusive case (from the r.h.s.
of Eq. (40)). The latter 1s closer to being the "true" or intrinsic
information associated with the product distribution for the specific

experiment.

Instead of con31der1ng the product 1nformat10n measure Ip , one

can consider the infqrmatlon defect with respect to a microcanonical

equilibrium situation (e.g., Eq. (33) y¥s. the upper bound of Eq. (34).).
We propose to measure the information defect by the average

deviation of Ip(ﬁﬁ) from its microcanonical equilibrium value
lp = . <yl = plv> (41)

We note that for a microcanonical equilibrium situation at a given
total energy E in the small interval between E and E + dE, all quantum
states are equally probable (a2 microcanonical ensemble), hence

Pyideq = ey/ e (42)
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and )
1 = - z - P . 43
IR (M ]gg lg(Y'gY.) -1g[(P. 1) g/8, 1] (_ )
Thus, the information defect is

p = I Py e P/ 0] e

It is expected that AIp > 0, with equality hoiding only for equilibrium.
This follows from Shannon's Lemma: If z'Py, = 1 and z'(py')eq = 1, then,

since 1g x 3 1 —-x'l, with equality if'x = 1, then
AT, sz P, [1-(P P,]J=z:P,-31(b; = 45
P Y' .Yv[ ( Y')eq/ Yv] ‘,Y' Y' Y'( Yl)eq O. - ( )

Thus, for any non-equilibrium distribution there is a net positive

"~ information defect, relative to the (microcanonical) equilibrium.

distribution. (A small AIp implies a more uniform distribution, a large

i s

"Alé a more sharply peaked distribution.)
. ‘Based on the results following Eq. (40), it is seen>that the.
information defect for an "imperfect", inclusive type experiment
will be less than the intrinsic value of the information defect as
obtained from an ideal clusive type specific experiment i.e,,

> (AIp) (46)

(AIP)clusive

inclusive 0:.

of course,(AIp) is the more correct characterization of the

clusive
specific experiment. "It is bounded from above by the information defect
for the (microcanonical) equilibrium distribution.

The equivalence between I_ and the thermbdynamic concept'of‘entropy
was ‘shown by'Jaynessa‘and Khinch:l.n,s'4 based essentially on Shannon's52
work. This will be employed and extended to deal with the present

application in Sec. 10.

T R "

i) g
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8.  GLOBAL AND SPECIFIC REPRESENTATiONS.

We have introduced a hierarchy of representations, depending on
the resolution obtained, which can be summarized as follows.
(a) Global clusive. This is the most detailed characterization

of the reaction possible (in principle) at a given total energy and
specified experimental conditions. It corresponds to a complete
specification of w(y,y') for all possible groups of inital and final
states. w(y,y')is the "rich experimentalist'$"P-matrix. In contrast,

the rich quantum theorist considers Pn“,n as the elements of the P-matrix.
However, under given conditions the experimentalist can only determine
the average of PnP n over ney and n'ey' (cf. (18)).

2

(b) Specific clusive. The most detailed summary of the specific

ideal experiment, showing the distribution of products w(y,y') for some
initial group of states y. A specific clusive experiment is equivalent
to a colum of the global clusive representation.

When one goes over to a continuous distribution of products
(i. e.,the classical 1imit) the specific clusive representatlon is the
result of a classical trajectory calculation. Figures 3 and 4 are
specific clusive representations.

The current state of the experimental art has not yet reached
the stage where both the initial and final states can be fully specified.
The following three representations take cognizance of this fact, by
averaging over either the detailed distribution of the reactants or of
the products or both. We can thus consider the following.

(c) Specific inclusive. The detailed distribution w(l,vy")

of products from some initial ensemble [. This is the distribution most
commonly obtained from chemiluminescence experixmemts]‘-S and, as discussed
before (cf. (46)), provides an information deficiency that ié nearer

to the equilibrium value than that obtained from clusive'ekperiments.

Very recent resultséﬁ'have now provided an insight into the dependence

of w(l,y') on the initial ensemble [ Alternatively, one can also consider
w(y,T*), the influence of the reactants’ state selection on the probabillty
of formation of products.
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(d) Global inclusive. A poor man's gmmatrii, in the form of w(T,T!);
say w(fT fT.), as shown in Figs. 1 and 5. An entry in the global inclusive
2

representation can be obtained by an averaging of w(T,y') (or w(y,I'')) over

y',y'el"' (or over yel), as shown in Fig. 5. Along the same lines as the
proof of (40) one can prove that the surprisal associated with w(r,r')
(i.e,,-1g w(r,r') ) is larger than the average of the surprisals of w(l,y').
Thus, an equivalent statement to (46) obtains. A poor man's P-matrix

is nearer to an "equilibrium" distribution than a rich man's P-matrix.

Any averaging necessarily reduces the information deficiency and brings

the resulting distribution nearer to the equilibrium (or statistical) limit.

28,29

To a certain extent, the success of the statistical theory depends on

this degradation of information by averaging.

(e) Inclusive . The direct experimental determination of a column
of the global inclusive P-matrix. Here one is concerned with transitions
between some averaged set of reactants (T) to an averaged set of products -
(r''), reporting the dependence of w(T,I'') either on I'' (the averaged
distribution of products) or on I' (the averaged role of reactant excitafion).
‘Molecular beam experiments with velocify analysis7'9 provide the fT' ‘
dependence of m(r,ff,). The pioneering studies .of the influence of reactant

internal energy were also of this type.

vt o mm e o=
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9. INFORMATION CONTENT OF A CONTINUOUS DISTRIBUTION

As discussed in the earlier sections, individual quantum states are
often not resolved and one observes continuous rather than discrete product'
state distributions. Problems invelving continuous distributions are

reputed to be more difficu1t53’55

because the concept of '"equal probability”
is less clear cut. In the present application, we have dealt with.this
problem already even for the discrete case. (Recall that the assumption
expressed by Eq. (28) is that we assign equal intrinsic probabilities to
each state in a group which is; in principle, unresolved experimentally).
Extension to '"valid" continuous distributions requires nothing more,
beside the conversion of summations over quantum numbers to integrations
over energies. Of course, proper care is required to identify eqﬁi—probabl:
quantum states; thus appropriate density of states factors are needed.

~ Our goal is to obtain an explicit expression for the average value
of the suprisal, IP’ for the case of a continuous product (or reactant)
state distribution. We shall consider Bf as the (continuous) energy corresponding
to the formerly discrete variable, say £, which is now {in the "'classical case')
continuous. Typically this would be the tramslational energy ET' (cf. Sec. 2):
The group f is the group of states with energies in the interval Ef to
Ef + dEf and 8¢ = gf(Ef) is the density of states, so that g (Ef) dEf is
the number of states in that energy interval. Pf = P(Ef) is also now a
continuous.p.d.f., with P(Ef) dEf being the (averaged) probability that
the product energy lies in the interval Ef to Ef + dEf. (Similar considerations
apply to reactant state distributions) ., ‘

The surprlsal 1 (f) = IP(Ef) is also now a contlnuous function of Ef

with the above 1nterva1 haV1ng the information measure I (Ef) dEf By
analogy with Eq (35), we have

I(E) "= ;lg[P(Ef)/gQEf)]

. z";“lg[w(Ef)] °
Here m(Ef) is the avefaged transition probability to the group £, where
the discrete averaging of Sec. 6 (cf. Eqs. (18) and (20)) is now an average’

(47)

over a small energy interval. The transition probability to the group f is
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given by
P(Ef)dEf = w(Ef)g(Ef)dEf (48)

(Of course, in practice, this is how one obtains-m(Ef) from the observations.)
Appropriate density-of-states factors (for diatomics”in the rigid rotor-.

harmonic'oscillator approximation) suitable for either bar or prism plots,

have been provided by Kinsey.
The information content of the distribution is, as in Sac.,7, the

average of the surprisal (cf. (32))

-
1

ApEQ> = [dfw(EQT,(Ep)

JdE. W(EJgEIL(EL) . (49)

In the case of more than one energy variable, e.g., EV" ER' as well
as ET" extension of the above should be readily accomplished, ‘taking '
advantage of the approach of Sec. 4.

“In practice the continuous integration in Eq (49) would be carried out

as a summation over energy "bins'':

I, = ;-‘Agw P(E ) [1gu(E ,)14E , ~(50)
(The results should become, asymptotically at-least, independent of bin size).
o Global results imply a knowledge of the dependence of the reaction
probability upon both initial and final energy variables. In the simple
 case of a bar plot (cf. Sec. 2) one can use either the averaged transition

. probability w(E,Ep,) or the yield Y(ET,ET;). From Eq. (23) .

.P.(..ET') = deTf(ET)Y(ET’ET') ’ ' (51).
where g(ET)f(ET)dET is the fraction of initial states with ET in the range
E; to E; + dE;. Similarly from Eq. (20) ' | ﬁ”‘f:;i\o\

(W(Ep)) = JdEg(Bp) £(Ep) w(Ep.Ep.) 6D

Corresponding results hold for the integratiqn over Ef, .
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10. ENTROPY DEFICIENCY OF A PRODUCT STATE DISTRIBUTION

There is a well-established equivalence between information content

52-55,62 In the case of

and the thermodynamic concept of entropy.
equilibrium distributions the situation ig clear cut, but in the present
non-equilibrium context it must be admitted that our recipe for assigning
probabilities by the equilibrium rule "all quantum states of the same energy
are equally probable” is less secure. Nevertheless this is the simplest
means of extending the more familiar squivalence to the problem of the
characterization of a non-equilibrium product state distribution.65

Assuming the validity of the equivalence, we next establish the
practical connection between IP and S in terms of numerical magnitudes
and units. From Eq. (17), if I, the "missing information content", is
based on the logarithm to the base 2, i.¢. 1 = 1g W, then to obtain the
usual result for the entropy, S = k log ! from Eq. (15) one must write

S = (k logei) Ip (83)

A measure of the specificity of the reaction is the entropy

deficiency in the product state distribution, which can be expressed

S"= (k logg2) AT, (54) .

with AIP given by Eq. (44). 1In practical terms, (i.e., for one mole of
reaction), the entropy deficiency is thus AS{e.u.) = 1.38AI . We recall
that the units of imformétion66 are bits, with 1 bit = g2 ? Since the size
of the entropy deficiency AS' is perforce limited'(i.e., the bound being
commensurate with the magnitude of standard entropy charge of reaction AS®)

there appears to be an intrinsic upper bound on AIP (bits).

The entropy deficiency would be zero if the product state
distribution were that predicted by a phase-space or statistical (density-
of-states) theory. For all actual situations AS’is intrinsically positive.
In principle, the product state distribution of a clusive specific experiment
would be suitable for analysis to ascertain the entropy deficiency aS’
of the reaction (although, due to imperfect reactant-state selection and
product resolution, it would yield only a lower-limit estimate of ASS.

One can recognize a hierarchy of experiments leading to a range of

AS' values. In the abgence of data, forced to use a statistieal theory, we
start with AS'= 0 . As we continuously sharpen the experiments the computed
AS’ will be 1&zger567 finally the limit of well-defined reactant and product
states (from a global clusive '
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representation) would yield the proper intrinsic value of the entropy
deficiency for the reaction at the total energy E. Presumably one would
then be in a position to consider the overall dependence on E.

Clearly the concept of an entropy deficiency 48 should also
be a useful one invcharacterizihg the poor-man's g~matrix§8 Whether it'gan.

be illuminating physically is considered in the second paper in this
series. Its relationship to the heuristically valuable concept of .an
entropy of activation for a canonical system at a temperature T remains : !
to be established.: ' |
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11. SUMMARIZING REMARKS

This paper has attempted to characterize the product (and reactant)
energy distributions obtained in reactive Scattering experiments or computer
simulations. Suitable forms of plotting results of global or specific-type
experiments have been suggested in Secs. 2 and 3 (see Figs. 1, 3, 4). Means
of parametrization of specific type results in terms of an expansion around
the most-probable states were developed in Sec. 4, with the most compact
form being that of Eq. (10).

The question of the information content of a discrete product state
distribution was discussed im Secs. 5 - 7 with the important results being
those of Eq. (17) for I, Eq. (32) for IP and Eq. (44) for AIP (the
information defect). Sec. 8 summarizes the types of representations used
and their interrelations and stresses the concept of the degradation of
information by averaging. The information defect, AIP’ is shown to decrease
with any additional averaging. The intrinsic Al, can only be obtained from
clusive experiments. Any less detailed results yield only a lower bound.

In Sec. 9 the genmeralization was made to continuous distributions, with
the results for IP given in Eqs. (49) - (50).

Finally, the concept of entropy deficiency AS' was proposed in
Sec. 10 and quantified in Eq. (54). .

Obviously there are many theoretical as well as practical
ramifications of the present, rather preliminary, investigation. These

are currently being pursued.
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APPENDIX I

There are at least three ways in which one can plot a function
I '(ET’ Ev, ER) whose variables satisfy a conservation relation, i.e.,
BEq. (2). (a) An equilateral triangular plot, as discussed in Sec. 3.
(b) A cartesian axis plot, as used in Refs. 24; 48, etc. and (c) a
triangular plot where the skewing angle is defined so as to diagonalize
the function I about the ,mihimum. '

The advantage of choices (b) and (c) -is the ease of diagonalizing
the function. For the cartesian case, one requires a_unitary matrix U,.say

' cos® sineg ' : '
U = : (A.1)
~ -sing coso ‘
" Here 8 is determined such that
k. _k k O :
U Xy gyt =( ¢ . ' (A.2)
- k k ~ 0 k .
Xy yy S

In this case, the maximum is determined by its two coordinates, by the
angle 6 and the two diagonal derivatives kc and ks. Case (a) is analogous
to case (b) but requires a pretransformation from the skewed coordinates
to cartesian coordinates.

Case (c) is analogous to the method of plotting the potential
energy surface for collinear collisions, with the exception that here one
chooses the axis not to diagonalize the kinetic energy but what corresponds
‘to the potential energy. In fact, we have loosely referred to the second
derivatives of I as the "force constants'. This is not simply because of
“ the mathematical analogy but beéause_of "thermodynamic" reasons (to be
discussed elsewhexe).

Choosing Ev and Ep as the independent var1ab1es we scale the Ep
axis by c (i.e., to be plotted is- ER/c) and tilt 1t by the angle ] from

N the (vert1ca1)Y‘ axis. Thus

i

. “ 7 | | . | . . (A.s)
X -Y tane

m
(1]
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where Ev is parallel to the X axis. The angle © is selected to eliminate

any cross derivative, i.e.,

sin®
(=== kx},/kyy

and the scale ¢ is defined so that ky = ky or

2
¢ = kxx/kyy

2 .
in“e = k__/k .
sin sy %yy
With these choices,

1%D = 1x™ y(W) , 132

where ,
0¥ = (x-x™?2 (3 - Y@)z

and k2 = kkx' Superscript (m) denotes the most probable value.

(A.4)

(A.5)

(8.6)

(A.7)

(A.8)

In this way the maximum has five parameters (aé@’, Eém), ¢, 6 -and k)

but only one second derivative.
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APPENDIX I1

"We are concerned with transitions between two sets of states F {X}
and r' {X } . Let p(I") and p(f") be the appropriate density matrices

for the two seéts. One can then define the rate constants for: the forward

and reverse rea.c‘tion59 60

k(r— )< {pMS p(MSTI/AT MY o0 .

and

R('-> 1)Tefpms Ar ST AT 4p(r Yy, @

In both cases we average over the initial ensemble and sum over the final
ensemble. When the states in the group X cannot be resolved under the .
given experimental conditions they are taken to be equiprobable.59 The

yield function and averaged transition probability are defined by

Y(T‘f’? Pl):T\r {P(F)SP(F‘)S_’.} (B.3) -

s (F—)= Y (M= PV S T ol

The yield functlonY( F—)Fl) represents the sum of the transition
probabilities while the probability functlon L)(f‘—yr‘) is the averaged
transition probability, evaluated at a specified total energy E.

1f P(l") and P( ') are separately invariant under time reversal,

(not necessarily always the case) then both Y(f‘-—‘rr') and a)(r‘—»r")

are also invariant, i.e.
Y(T‘-o\" )= Y(r' M) = Y( e

and similarly for ()(I, n! ). When P(f‘) is a microcanonical d1$tr1but1on

. one can use the shorthand notation Y(E) Cor W(E)).
' In general, it has been shown (i.e., Ref. 59, p: 143) that the

" time-reversed form of an operator, here denoted by a bar, 1s given by

‘P N Op (MQ S 5.6

‘where 9 is the time-reversal operator. Since the density operator

o is Hermitian, .it -is time reversal invariant if
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—P-(l"):: @P(T‘) e ! :PCF), S (B.7)

Using the properties of the trace one can go through the following sequénce
of operations and show thatY(f‘—-vr'l) = Y(l’“..»{").

If P = P,
TiplMsplr)stl= TY‘{PG" %*p(r‘)sg

(B.8)
=T{ep(r) 6 'sTop( & g}'r;{f(w)e topr)s'ss)
From Eq. (B.6) (or Ref. 59, p. 147), |

S =pste | o
mdsinee O =1

S=6"%Te, o
Thus the last term qn the right hand side of Eq. (B.8) becomes

T {p(r)s p(m Sﬂ
seen to be the same as the first term (the L.h.s.) with [' eand [’/

interchanged.
Then

V(M=) =Ty {p(r)g el ST% '
T spCIsty <y r)

as expected, so

V() =Y (s )=y (M )=V (00 e



35

Footnotes and References

1. For a review of recent developments in chemiluminescente, see
T. Carrington and J. C. Polanyi, chapter in International
Review of Science: Reaction Kinetics, MTP, Oxford (1972) L {
2. The first such study was that of (a) J. K. Cashion and J.C. Polanyi,
J. Chem. Phys. 29, 455 (1958). See also (b) J. C. jp;anyij J. Chem.
Phys. 34, 347 (1961). , .
3. An example of an extensive study is that of K.G. Anlauf,P.J. Kuntz,
D. H. Maylotte, P.D. Pacey and J. C. Polanyi, Disc. Far. Soc: 44,
183 (1967). '
4. See also (a) H. W. Chang, D. W. Seteer M. J. Perona and R.L.Johnson,
" Chem Phys. Letters 9 587 (1971), (b) H. W. Chang, D.W. Setser and
M.J. Perona, JQ»Am. Chem. Soc. 75, 2070 (1971). , , ‘
5. See also N. Jonathan, C. M. Melliar-Smith and D.H. Slater, Mol.Phys.
20, 93 (1971).
6. A summary of these "derived" translational distributions is given
by K. G. Anlauf, P.E. Charters, D. S. Horne, R.G. Macdonald,
D. H. Maylotte, J. C. Polanyi, W. J. Skrlac, D.-C. Tardy and -
K. B. Woodall, J. Chem. Phys. 53, 4091 (1970). -
- 7. The first such study was that of (a) A.E. Grosser, A.R, Blythe and
) R.B. Bérnstein.,J. Chem. Phys. 42, 1268 (1965) .A more recent one is
(b) K.T. Gillen, A.M. Rulis and R.B. Bernstein, J. Chem. Phys. 54,
2831 (1971). »
8. - An early study is that of (a) J.H. erely and D.R. Herschbach J.
Chem. Phys. 44, 1690 (1966). A more recent one is (b) J.D. McDonald,
P.R. LeBreton, Y.T. Lee and D.R. Herschbach J. Chem. Phys. 56,
760 (19729 .
9. See also J. B. Cross and N.C. Blais, J. Chem. Phys. 55, 3970(1971);
. " ibid., 52, 3580 (1970). | - ~
10.- For a review of experimental developments in reactive scatter1ng,
“see J.L. Kinsey, chapter 1n‘1ﬁterﬁationa1 Review of Science:Reaction
' Kinetics, MTP, Oxford (1972). E . T

/




11.

12.
13,
14,

15.

16.

17..

18.

36

The first such study was that of (a) R.R. Herm and D.R.
Herschbach, J. Chem. Phys. 43, 2139 (1965). See also (b) C.Maltz
and D.R. Herschbach, Disc. Far. Soc. 44, 176 (1967).

A recent one is that of R. Grice, J.E. Mosch, S.A. Safron and
J.P. Toennies, J.Chem. Phys. 53, 3376 (1970). ’

The first such study was that of S.M. Freund, G.A. Fisk, D.R.
Herschbach and W. Klemperer, J. Chem. Phys. 54, 2510 (1971).

A recent one is that of H.G. Bennewitz, R. Haerten,  and

G. Miller, Chem. Phys Letters 125 335 (1971) .

See, for example, (a) M.J. Berry and G.C. P1mente1 J. Chem. Phys.

49, 5190 (1968). Also, (b) J.H. Parker and G.C. pimentel, J. Chem.

Phys. 51, 91 (1969); ibid., 55, 857 (1971).

See also M.C. Lin and W.H. Green, J. Chem. Phys.'gé, 3383 (1970C).

The first such study was that of A.L. Schmeltekopf, E.E. Ferguson

and F.C.Fehsenfeld, J. Chem. Phys. 48, 2966 (1966). See also, for
example, D.H. Stedman, D. Steffenson and H. Niki, Chem. Phys. Letters
7, 173 (1970). '

(a) W.A. Chupka and M. E Russell, J. Chem.Phys 49, 5426 (1968),(b)
W.A. Chupka, J. Berkowitz and M.E. Russell, Abstracts VI ICPEAC,

- M.I.T., Cambridge, Mass. (1969), p. 71.

19,

20,

21.
22,

23.

24,

25,
26.

T.J. Odiorne, P.R. Brooks and J.V. Kasper, J. Chem. Phys. 55, 1980
(1971). SO _ ,
M.J. Berry and G. C P1mente1 J. Chemn. Phys 51, 2274 (1970); ibid.,

' 53, 3453 (1971)..,.,

For a review, see C.B. Moore, Ann. Rev. Phys. Chem. 22, 387 (1971) .
See, for example, R.B. Bernstein,. Israel J. Chem. 9, 0000 (1971) and
refs. therein. :

For a review of theoretical-computational developments in reactive
scattering, see R.D. Levine, chapter in International Review of

~ Science: Theoretical Chemistry, MTP, Oxford (1972).

K.G. Anlauf, D.H. Maylotte, J.C.Polanyi and R.B. Bernstein, J. Chem
Phys. 51, 5716 (1969).

J.L.Kinsey, J..Chem. Phys. 54, 1206 (1971),

R.A. Marcus, J. Chem. Phys. 53, 604 (1970).



27.

28.
29.
30..

31.

32,

33. .

34.

35,

36.

37,

- 38,

40.

41,

42.‘

37

 See, for example, (a) R.D. Levine, F.A. Wolf and J.A. Maus,

Chem. Phys. Letters 10, 2 (1971), and (b) R.D. Levine and
R.B. Bernstein, Chem. Phys. Letters 11, 552 (1971).

E.E. Nikitin, Theor. Exptl. Chem. 1, 83, 90 (1965).

J.C. Light, Disc. Far. Soc. 44, 14 (1967).

See also. D.G. Truhlar, J. Chem. Phys. 54, 2635 (1971).
For a review of quantal treatment of reactive scattering,

. see J.C. Light, Adv. Chem. Phys. 19, 1 (1971).

For a review of classicalntrajectory methods, see

~ D.L. Bunker, Method. Comput. Phys. 10, 287 (1971). ;

See, for example, (a) L.M. Raff, L.B. Sims, D.L. Thompson

and R.N. Porter, J. Chem. Phys. 53, 1606 (1970); B.H. Mok

and J.C. Polanyi, J. Chem. Phys. 53, 4588 (1970) and refs.
therein. . : _ : , ' .

See also J.T. Muckerman, J. Chem. Phys. 54, 1164 (1971);

ibid:; 56, 0000 (1972).

For a review, see P.J. Kuntz, Electronic and Atom1c Colllslons,

" Invited Papers, VII ICPEAC, North-Holland Press, Amsterdam (1971).
‘M. Karplus, chapter in C. Schlier, Ed., Molecular Beams and
- Reaction Kinetics, Academic Press, N.Y. (1970), p. 372,

and refs. thereln.

.For a review of reactive scattering of ions and molecules,

see E.W. McDan1e1 V. Cermak, A. Dalgarno, E.E. Ferguson

and L. Fr1edman, Ion-Molecule Reactions, Wiley-Interscience,
N.Y. (1970)

The first such study was that of A.P.M. Baede, A.M.C. Moutinho,

"A.E. deVries and J. Los, Chem. Phys Letters 3, 5;0 (1969)
~See also (b) A M.C. Moutinho, J.A. Aten and J. Los,

_ hAbstracts VII ICPEAC North- Holland Press, Amsterdam (1971)
~p. 280.

39,

Another early study was that of R K.B. He1b1ng and E W. Rothe,
J. Chem Phys 51, 1607 (1969)

See also R M. Compton, S.J. Nalley, H.C. Schwelnler and

V.E. Anderson Abstracts VII ICPEAC North Holland Press,
Amsterdam (1971), p.288. _
M.E. Gersh and R.B. Bernste1n, J. Chem Phys. 55, 4661 (1971).

F.P. Tully, Y T. Lee and R. S. Berry, Chem. Phys. Letters 9,

) 80 (1971). o




38

43, C.F. Giese, Chap. 2 in P.J. Ausloos, Ed., Jon Molecule
Reactions in the Gas Phase, ACS Advances in Chemistry
Series No. 58 (1966), p. 20. |
44, (a) C.A. Coulson and R.D. Levine, J. Chem. Phys. 47,
1235 (1967); (b) R.D. Levine, Quantum Mechanics of Molecular
Rate Processes, Clarendon Press (Oxford 1969), See, 2.8.2 .
45. For a variety of reactions which show either ''spectator-

stripping" or "complex" formation behavior, E%T), is found

to be proportional to ET46. Thus, for E. »>-AE_, f(m) is
nearly independent of E. Of course, féTT, or f@T) may vary
with E, but will probably vary less strongly than will
EéT) or E&T)

46. A. Henglein, chapter in C. Schlier, Ed., Molecular Beams

and Reaction Kinetics, Academic Press, N.Y. (1970), p. 139.

47. The triangular contour maps of Anlauf et a1.24, Polanyi

48 and Kinseyzs, constructed for the inverse

and Tardy
(endoergic) reaction from data obtained on the reaction
studied in the forward (exoergic) direction, are of this type.

48. J.C. Polanyi and D.C. Tardy, J. Chem. Phys. 51, 5717 (1969).

49, For examples of such calculations dealing with the role of
vibrational excitation of reactants see (a) J.B. Anderson,

J. Chem. Phys. 52, 3849 (1970) and (b) R.L. Jaffe and
J.B. Anderson, J. Chem. Phys. 54, 2224 (1971).

50. Structural features of the E-matrix for inelastic
scattering (rotational excitation of a diatomic rigid rotor)
have been pointed out by (a) W.A. Lester, Jr. and
R.B; Bernétein, Chem. Phys. Letters 1, 207, 347 (;967)9
(b) R.D. Levine and B.R. Johnsonﬂ Chem. Phys. Letters 4,

365 (1969) aﬁd (c) W.A. Lester, Jr,.gyﬁ %Tpi'Bernsteim,

J. Chemt Phys. 53, 11 (1970). A "matrix shape' approach

to inelaétié scattering has been proposed by (d) H.A. Rabitz,
J.Chem.Phys. 55, 407 (1971). o :

51. R.A. LaBudde, private communication (1971). p.d.f. demotes
'probabili_tydgax‘i‘c ion. | '

52. The original work is that of (a) .C.E. Shannon, Bell System
Tech.J. 274379, 623 .(1948); it is reprinted in (b) C.E. A
‘Shannon and W. Weaver, The Mathematical Theory of Communication,
University:of -Illinois Press, Urbana .(1949).

53. E.T. Jaynes, Phys.- Rev. 106, 620 (1957); ibid., 108, 171 (1957).




39

54, A.I. Khinthih; Mathematical Foundations of Information Theory,
Dover, New York (1957). :

55. A. Katz, Principles of Statistical Mechanics, Freeman,
San Francisco (1967).

56, J.E. Mayer and M.G. Mayer, Statistical Mechanics,
J. Wiley, N.Y. (1940), p. 436. '

57. One cannot -in practice specify the initial orbital angular

momentum. Equally, in the absence of a field, one cannot
specify orientation quantum numbers, etc. Thus, all these
different states are usually counted together. Similarly,
when the initial group y is the group of all imnitial
orientation quantum numbers, all final orientation
quantum’ numbers (in the absence of a field) are indis-
tlngulshable and have to be counted together as a group Yy {

58. J. Ross, J.C. Light and K.E. Shuler, chapter in Kinetic

"ProcesseS'in'GaSes'and Plasmas, Academic Press, N.Y. (1969),

p. 281.

59. R.D. Lev1ne, Quantum Mechanlcs of Molecular Rate Processes,

" Clarendon Press, Oxford (1969).

60. C.A. Coulsan and R.D. Levine, J. Chem. Phys. 47, 1235 (1967).

61. R.C. Tolman, Statistical Mechanics, Clarendon Press,

_ Oxford (1938).

~ 62. M. Tribus, Thermostatics and Thermodynamics, Van Nostrand,

, N.Y. (1961), p. 64. _

" 63. From Ref.'54, p. 4, it is seen that the average of a convex

function is larger than the value of the function at the

E average argument. In the-present.notation, if f"(x) > 0,

_ F Pr f(x f(z P Xp ).

.- 64% - L.T. Cowley, D st Horne and J.C. Polanyl, Chem Phys.

' Letters 12, 144 (1971).

65. C. Kittel, Elementary Stat15t1ca1 Phy51cs, J. Wlley, N Y.

. (1958), p. 172. ,

66. L. Br1IIOU1n Science and Information Theory,

Academic Press, New York (1956)




67.

68,

40

The AS obtained from  “poor man's”inclusive data (where

IP = -1gw(l,T')) would be positive, but may be much smaller
than that obtained from averaging over specific inclusive
data (where we obtain Ip = —-é, Py, lgw(l',y')). The upper
bound for AS is provided by the I, obtained as an average
over specific clusive data. (This intrinsic value is

Ip = —Z‘ PY'$ PY :
follow'as in (44), imply that every constraint imposed on

the possible freedom of choice of the initial state

lgw(y,v')). These considerations, which

immediately results in the decrease of AS. An extensive
discussion of the three information measures mentioned

above will be given in a later paper in this series.
0f course, there can be an infinite variety of product distributions

(or P-matrices) with the same AS' , so it alone is by no means a
unique characterization of the distribution. As is well known, one
requires all the moments of a probability density function to
characterize it uniquely. However, AS' and the two independent
first moments (e.g., (AE"n) and <AE",ib> , etc.) together serve
to specify most of the physically interesting features of the reactive
scattering behavior for the microcanonical ensemble at the specified
E . This has the macroscopic analogy: for a canonical system at a
temperature T, we may ﬁchafacterize' the reaction by as® and aAE°
(or AHO). ‘
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" 'Legend for 'F'igures

(a) Contour map of (ET’ET‘) at a fiied value of the total energy,
E = 10 unite, for a (hypothetical) exvergilc reaction for which -AEO

units. Thus ET and Epe

(b) A square~faced bar plot w(fT’fT’) for the same reaction, showing the

dependence of tlié contour map upon the total energy, over the range

10 < E < 50 units. The "trajectory” of the maximum of w as a function
of E appears as thelheavy curve passing down the length of the bar.

For the purpose of drawing the results in (a) and (b) they were scaled such
that, at the maximum, w has been assigned the value 1, i.e., w(m)(E) = 1.
(A similar comment applies to Figs. 3-5.) An actual experiment (or compu-

tation) would also provide the energy dependence of the peak value, w(m)(E).
: (m) E .

Thus, besides Fig. 1(c) one would also require a figure showihg w vs.

(¢) The coordinates of the loei of the maximum,i.e.,f(m) and f(?),
: , R T T

vs. total energy E over the same range as in (b).

1

cross section. for xherreaction Nz(v) + 0 -> NO + N (AEo = 1.1eV). The
E dependence is taken from Ref. 17, while the'E dependence is from Ref. 43.
Triangular product contour map of w(fT,, fV" fR" v’ £ ) for some fixed

(but here unspecified) f ’ fR, E. In the ?xample shown, the locus of the

most probable w 4is f = 0.15, £,, = 0.25, £, = 0.60 (most of the avail-~

R’ A

able energy going 1nto product vibrational excitation). Here and in Fig. 4

the triangular'maps represent the results of tpecific clusive experiments.

\

(cf. Sec. 8).

(a) Prismatig_plot of w(fT,, fyrs fpos £ fR) showing the dependence of

the triangular contour map of Fig. 2 upon the total energy E (5 ¢ E § 20 units).

£ (m) g (m)

(b) The coordinates of the loci of the maximum, i.e. T" V" R' ’

plotted vs. E over the same range as in (a).

range°from 0 to 5 and 0 to 10 units, respectively.

plotted



5.

"Decomposition" of a single point on the square contour map W(fyn, f£r)

into its two "components', i.e,, cuts through the two triangular con-~
p ’ :

tour maps w(fv, fR’ aj fT‘) and w(fv,, f b; fT). The global maps

RY?
here and in Fig. 1 are global inclusive representations. Thus these

triangular maps represent specific inclusive experiments.
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